A Flexible Approach to Quantifying Various
Dimensions of Environmental Complexity

Michael L. Anderson
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742, USA.

Tel: (301) 405-1746

Fax: (301) 314-1353

Email: anderson@cs.umd.edu

ABSTRACT—1n this paper I propose a flexible method
of quantifying various dimensions of the complexity of a test
environment, including its information density, variability, volatil-
ity, inconsistency, and uncertainty. This allows one to determine
the task performance of intelligent agents as a function of
such measures, and therefore permits derivative measures of
their perturbation tolerance—that is, their ability to cope with
a complex and changing environment.

Keywords:
complexity, perturbation
testbeds

1. INTRODUCTION

There are many important and valid approaches to mea-
suring the performance of intelligent systems: provable
optimality; typical (and worst-case) solution times; speed
and throughput, to name just a few. However, if one is
interested, as my research group is, in complex systems
operating in changing environments with time and resource
constraints—that is, environments where there may be
no optimal solution, or no time to calculate one, and
where experience may confound expectations in significant
ways, and thus where finding some way to accomplish
something is more important than finding the theoretically
best way—then such standard measures of performance
may not capture the most interesting and crucial elements
of performance.

As is well known, maintaining adequate performance in
complex and changing environments has been a perennial
stumbling-block for intelligent systems, and an ongoing
challenge to Al A typical Al system designed for a specific
task often fails utterly when circumstances take it even
slightly outside its task specifications. Thus, the ability to
handle unexpected difficulties, even if non-optimally—that
is, the ability to muddle through difficult situations without
breaking down—seems to us an ability worth specific
study, and, if possible, implementation.

We call this general ability to cope with a complex
and changing environment “perturbation tolerance”. The

tolerance, standards,

term is meant as an extension and generalization of John
McCarthy’s notion of “elaboration tolerance”—a measure
of the ease with which a reasoning agent can add and
delete axioms from its knowledge base [1]. However,
our term is more general than McCarthy’s because his
is explicitly limited to formal, symbolic systems, and an
elaboration is defined as an action taken to change such
a system [2]. But since a given intelligent agent may
well consist of more than just a formal reasoning system,
and flexibly coping with a changing world may therefore
involve altering components in addition to, or instead of,
its formal reasoner, we define a perturbation as any change,
whether in the world or in the system itself, that impacts
the performance of the agent. Performance is meant to
be construed broadly to encompass any measurable aspect
of the agent’s operation, although, as will be explained
below, we tend to favor measures for such things as average
reward and percentage task completion over such things
as reasoning speed or throughput. Perturbation tolerance,
then, is the ability of an agent to quickly recover—that is,
to re-establish desired/expected performance levels—after
a perturbation.

However, if improving perturbation tolerance is to be
among the goals for intelligent agents, it will be necessary
to quantify and measure this aspect of performance. And if
perturbation tolerance is primarily a matter of maintaining
performance in the face of various kinds of complexity
and change, then it is just such complexity and change that
should be the focus of measurement. Further, it would be
best if, instead of each lab and working group devising
their own set of standards, there were a common standard,
and preferably one that might be applied to say something
useful about current testbeds. For instance, is Phoenix [3],
[4] more or less complex than Tileworld [5]? And how
can one compare the relative complexity of two different
Tileworld runs?

To this end, I suggest a way to specify an environment
that allows for such factors as its complexity, informa-

tion density, variability, volatility and uncertainty to be
measured. From such measures I show how derivative
measures of environmentally-relative task difficulty and
degree of perturbation can be developed, and suggest some
different metrics for measuring task performance.

2. COMPARISON WITH RELATED WORK

First, as mentioned already above, it should be made clear
that while the approach defined here could be used to
build new testbeds, it can also be used to characterize the
properties of existing testbed environments in a uniform
way. Thus, what is offered here is less a blueprint for new
standard testbed implementations, and more a suggestion
for a standard way of measuring some important properties
of the testbed environments within which intelligent agents
operate. It is perhaps worth noting that the lack of a
standard way to evaluate intelligent agents has prompted
DARPA to modify their Cognitive Information Processing
Technology research initiative to include Cognitive Sys-
tems Evaluation as a focal challenge.'

One weakness of some domain specifications, from the
standpoint of evaluating perturbation tolerance, is that they
focus on controlling the characteristics and interactions of
the agents in the world, rather than on fine control of
the world itself. In MICE, for instance [6], the main goal
was “an experimental testbed that does not simulate any
specific application domain, but can instead be modified
to impose a variety of constraints on how agents act and
interact so that we can emulate the different coordination
issues that arise in various application domains.” This
strategy is, of course, perfectly sensible when it is the
coordination strategies of multi-agent systems that is under
investigation, but it provides little foundation for measures
of perturbation tolerance per se.

Another weakness of some domain specifications is the
limited number of environmental features that can be easily
isolated and measured. For instance, the Phoenix testbed
[3], [4] offers ways of building complex and dynamic
environments (in which the main task is fighting forest
fires), but does not offer a general method for measuring
the complexity and dynamicity of those environments.
Even what is perhaps the most popular and adjustable
of the standard test domains for simulated autonomous
agents, Tileworld [5], suffers somewhat from this defect.
The main task in Tileworld is to fill holes with tiles,
quickly and efficiently, while avoiding obstacles. Among
the strengths of Tileworld is its ability to easily measure the
performance trade-off between deliberation and reactivity.
Tileworld allows one to set the value of such environmental
variables as the frequency with which objects appear and
disappear, the number and distribution of objects, and the

Uhttp://www.darpa.mil/baa/baa02-2 1mod6.htm

reward value for filling each hole. However, as important
as these environmental variables are, there are also other
aspects of an environment with which an intelligent agent
must cope, and against which performance should be
measured. In addition, it is not clear how to translate
the variables governing Tileworld to those governing other
environments. Finally, Tileworld tests only planning (and
plan implementation) performance. But intelligent agents
may also need to be able to perform such tasks as the
inference-based categorization or identification of objects;
the communication of accurate information about an envi-
ronment; and the mapping of stable environmental features.
The current proposal, in providing a more general approach
to measuring environmental complexity, aims to lay a
foundation for measuring performance in these tasks as a
function of the complexity of the environment, and to make
cross-domain and even cross-task comparisons easier.

3. COMPLEXITY METRICS

It is proposed that the environment be modeled as an
n-dimensional grid?> with a large number of propositions
(including sets of numeric values and node activations, to
simulate the operation of perceptual NNs, sonar, etc.) that
can characterize each location, or “square”, in the grid.
Each square may be adjacent to (accessible from) one or
more other squares. Each proposition p might or might
not hold in each square s. As s comes into the perceptual
range of the agent, it “picks up” on the propositions that
characterize it (propositions consisting of numeric values
“stimulate” the appropriate perceptual systems directly;
symbolic propositions are entered directly into the agent’s
knowledge base (KB), and might be thought of as the
sort of structured representations that would typically be
delivered to an intelligent system by a complex perceptual
system like vision).?> The combination of a grid of a certain
size and shape with its characterizing propositions is called
an overlay (O).

Any given environment has many different features that
determine its complexity, independent of the task to be
performed in that environment. Specifying the environment
in the terms given above allows one to measure these
features as follows.

3.1. Basic Measures

2For a discussion of the wide applicability of this model, see the
subsection on Generality and Extensibility, below.

31t is perhaps worth emphasizing that the only propositions relevant to
the specification are those characterizing features of the environment that
the agent would be expected to perceive or otherwise pick up. The number
of water atoms at a given location would not be a relevant proposition
unless the agent in question is capable of seeing and counting water
atoms. Note the implication that the more perceptually sophisticated the
agent, the richer its domain.

n

pr

(overlay size): the number of squares in the overlay. If
the number of squares changes during the course of an
experiment, this will naturally have to be reflected in
the measure; whether it is best to use the average size,
the final size, or some other measure may depend on
the details of the experiment. Note that to choose the
number of squares for an environment is also to choose
the spatial granularity of the environment. There can
be some hidden difficulties here, for instance in the
case where different tasks, e.g. navigating a hallway
or picking a lock, require that an agent divide space
more or less finely. It may the that in these cases, it
will be best to treat moving from one task to another
in terms of moving from a low-granularity overlay to
a high-granularity one.

(information density): the average number of proposi-
tions characterizing each square.

(variability): a measure of the degree of difference in
the characterizing propositions from square to square.
V, can be calculated as the sum of the propositional
difference between each pair of squares in the overlay
divided by their geometric (minimum graph) distance:

Dy (sis 85)
G(Si,Sj) (1)

ij=1

Where D, (s;,s;) is the number of propositions that
hold in s; but not in s; and vice-versa; G(s;,s;) is
the distance between the squares and n is the total
number of squares in the overlay.

(volatility): a measure of the amount of change in the
overlay as a function of time. §, can be measured in a
way similar to V,,, except that rather than measure the
propositional difference as a function of geographical
distance, we measure it as a function of temporal
distance.

Dy(si1,8i5)
J

2

ij=1

Where D, (s;.1, S;,;) is the number of propositions that
hold in s; at time 1, but not in s; at time j, and vice-
versa; ¢ is the total time of the simulation, and n is
the number of squares in the overlay.

(inconsistency): the amount of direct contradiction
between the beliefs of an agent (in its KB) and the
propositions characterizing the environment. Note this
must be a measure of the number of direct contradic-
tions between p and —p, since the inconsistency of any

two sets of propositions is in general undecidable [7].4
I can be measured as the percentage of propositions
initially in the overlay that directly contradict elements
of the agent’s initial KB (e.g., 2%, 5%, 10%, 15%,
25%). In the case where J, > 0, a more accurate mea-
sure might be the average percentage of propositions,
over time, that directly contradict elements of the
initial KB. Note, however, that this measure should not
reflect the percentage of direct contradiction between
the environment over time and the KB over time. I
is meant to be a measure of one kind of difficulty an
agent might face in its environment, that it needs to
overcome (or at least manage) in order to successfully
cope with that environment. Thus, only the initial KB
should be used to determine I, for if, through the
efforts of the agent, I approaches zero as the test run
proceeds, this is a measure of the success of the agent,
and does not represent a reduction of the difficulty of
the task the agent faced.

(uncertainty): a measure of the difficulty of perceiving
the contents of the square correctly. Uncertainty can
be understood as the ratio of the average number of
“false” propositions (py) in each square to the average
total number of propositions in each square.

U=pys/pr 3)

In the case where one is building a testbed, uncertainty
requires the designer to seed the squares with false
or inapplicable propositions, or perhaps, after assign-
ing propositions to each square, to replace a certain
number of them with their negations. In the case of
modeling an existing testbed, or where using numeric
values rather than propositions, if the percentage of
time that the system will make perceptual errors is
known, this number can be used here.

(overlay difference): a measure of the propositional
difference between two overlays O; and Os. D,
can be measured as the sum of the propositional
differences between the corresponding squares of each
overlay.

n

Do =" (50,,i,50,.1))

=1

Two overlays may have precisely the same information
density, variability and volatility, and still be charac-

4A practical aside: work with Active Logic shows that although an
indirect contradiction may lurk undetected in the knowledge base, it may
be sufficient for many purposes to deal only with direct contradictions.
After all, a real agent has no choice but to reason only with whatever it
has been able to come up with so far, rather than with implicit but not yet
performed inferences. Active Logic systems have been developed that can
detect, quarantine, and in some cases automatically resolve contradictions
[8]-[13].

terized by different propositions; hence this measure
of overlay difference. This is useful for cases where
an agent is to be trained in one overlay, and tested in
another, and the question is how much the differences
in the test and target domains affect performance.

It is not expected that every testbed, nor every test
run, will make use of all these measures of environmental
complexity. Depending on the capabilities of the testbed,
and on what is being tested at the time, only a few of these
measures may be appropriate. Note further that, depending
on the task, some of these measures can simulate others.
For instance, even in a completely stable environment
(6o = 0), the agent can experience the equivalent of
volatility if V,, > 0, for as it traverses the environment each
square will offer different information. This difference may
not affect the agent at all if its sole task is to map the
environment, but it could make an inference-based task
more difficult in the same way that a changing environment
would. Likewise for the case where I > 0, for as the
agent encounters these contradictions, they can offer the
equivalent of change, since change can be understood in
terms of p being true at one time, and not true at another.
Naturally, determining what manner of variation affects
what tasks, and by how much, is one of the items of
empirical interest to Al scientists. Isolating these different
kinds of complexity and change can help make these
determinations more specific and accurate.

3.2. Derivative Measures

The basic measures discussed above can be combined
in various ways to construct any number of derivative
measures. One such measure of particular importance is
of the overall complexity of the environment.

C (complexity): a measure of the overall complexity of
the environment. C' can be defined as the product of
all the non-zero basic measures:

C=nxpr xV,xd, x (I+1)x 100U 5)

The intuition behind this compound measure of complexity
is that there are in fact many different reasons that an
environment might be difficult to cope with, all of which,
therefore, can be considered to contribute in some way
to the overall complexity of the environment itself, or
to a measure of the environment’s contribution to the
difficulty of tasks to be performed there. For instance, a
large environment is in some sense more complex than
a small one ceteris paribus, just because there is more
of it to deal with. After all, mapping or locating objects
in a large environment is likely to be harder than doing
it in a small one. Likewise, information density captures
the notion that a more intricate environment—one that

requires a greater number of propositions to describe—
will be harder to reason about or deal with than a less
intricate one. Sometimes this will mean that an intelligent
agent has more to think about in trying to act in a more
intricate environment, and sometimes this will mean it has
more to ignore; both can be difficult. The variability and
volatility of an environment expresses the intuition that
an environment that remains more or less the same from
place to place, and from time to time, is simpler than
one that does not. Inconsistency expresses the idea that an
environment that is very different from one’s expectations
will be harder to deal with than one that is not, and,
similarly, uncertainty captures the fact that if it is harder
(for whatever reason) to correctly perceive an environment,
then certainly coping with it will also be more difficult. The
overlay difference allows one to quantify the notion that
moving between different domains can be difficult (and is
likely to be more difficult as a function of the difference).

It may well turn out, after further consideration, both
that there are more factors important to the complexity of
an environment, and that each factor contributes to a mea-
surably different degree to overall complexity (something
that might be expressed by adding various coefficients to
equation 5). Likewise, perhaps it will turn out that more
accurate expression of overall complexity results from
adding rather than multiplying all or some of the various
factors. I would welcome such future developments as
improvements of the preliminary suggestions I am offering
here. Ultimately, an evaluation of the usefulness of these
measures will require, and suggestions for improvement
will certainly result from, their attempted application in
evaluating the performance of intelligent agents in increas-
ingly complex environments. My hope is only that they
are well-specified enough in their current form to lend
themselves to such use.

3.3. Generality and Extensibility

I have characterized the test environment in terms of a
grid of squares of a certain size and shape. Naturally, such
a characterization is most directly applicable to artificial
environments in fact composed of such a grid (“grid
worlds”’). However, it should be noted that whenever it is
possible to divide a domain into parts, and characterize
(the contents of) those parts in terms of some set of
propositions, in the sense defined above, then it should
therefore be possible to characterize and measure the
complexity of that domain in the terms set forth here. We
might call such domains “grid-available”.

One obvious case of a grid-available domain is one
consisting of a mappable terrain (or space) with discrete,
localizable features. There are very many domains of
this sort, including those, like the world itself, that are
not naturally structured according to a grid, i.e. that are

continuous. It is nevertheless possible, albeit with some
abstraction, to usefully divide such a domain into spatial
parts, and characterize the features of each part in terms
of a set of propositions.

Another class of domains that are grid-available are
those that, while not strictly-speaking spatial, nevertheless
consist of individualizable information-parts. A database is
one such domain, and the World Wide Web is another. In
each case, the domain consists of individual parts (records,
pages), with specifiable contents, that may be adjacent
to (linked to, accessible from) one or more other part(s).
Depending on the needs of the experiment, an “overlay”
might be defined as an entire database or set of web-pages,
or some particular subset, as for instance the recordset
returned by a given query.

Finally, well-specified state spaces are also grid-
available domains. Each state corresponds to a “square”
in the grid, and the agent can take actions that move it
between states. The states themselves can be characterized
in terms of some set of propositions.

Examples of domains that are not grid-available include
truly continuous or holistic domains that cannot be usefully
broken into parts and/or have few or no local properties (all
properties are properties of the whole). Domains described
at the quantum level appear to be of this sort, as global
quantum properties are often not determined by local
ones, making analysis of the parts far less useful than in
classically described domains.

4. SAMPLE PERFORMANCE METRICS

In keeping with the philosophy that flexibility and
adaptability—an ability to get along even in difficult
circumstances—are among the paramount virtues of cog-
nitive agents, we suggest that evaluating task performance
is more important than evaluating such things as reasoning
speed, throughput, or the degree of consistency in a post-
test KB. Indeed, for an intelligent agent it may be that
maintaining a consistent database is in general less impor-
tant than being able to deal effectively with contradictions
while continuing to operate in a dynamic environment.’
Consider, for instance, a target location task, where the
agent must traverse an environment containing 100 targets
(lost hikers, for instance) and find them all as quickly as
possible. A simple measure of performance here might be:

_ (TP
M= A (6)

5This is because, for any sufficiently complex knowledge base that was
not produced by logical rules from a database known to be consistent,
and/or to which non-entailed facts are to be added (e.g. from sensory in-
formation), it will not be possible to know whether it is consistent, nor to
use principled methods to maintain consistency [7]. Thus, contradictions
are in this sense practically inevitable.

where T is the number of targets correctly identified,® A
is the percentage of environmental area covered at the
time the measurement is taken (this allows a measure
of M to be taken at any time in the run, e.g., when
A =025A = 0.5,A = 0.75 etc.), t is time elapsed,
and P is the percentage of task completion (percentage of
targets, out of all 100, correctly identified). Because a low
performance time is generally only desirable when task
completion is high, ¢ is divided by P to penalize fast but
sloppy performers.

In the case where the identification of the target is
inference-based, and therefore liable to error (for instance,
the agent has to tell the difference between lost hikers, park
rangers, and large animals), tracking not just correct target
IDs (True Positives, or TP) but also False Positives (FP),
False Negatives (FN), and True Negatives (TN) will allow
one to use the following standard performance metrics:

Sensitivity = TP:Z_%
. . _ TN
Specificity = 7x7p

PPV (Positive Predictive Value) = TPTJF%

NPV (Negative Predictive Value) = %
Although the bare metric M, and the measures for sensi-
tivity, specificity, PPV and NPV, give one straightforward
way to compute the performance of a given agent, and to
compare the performance of different systems, when one is
dealing with intelligent agents that can learn, it is also very
important to measure the change in performance over time,
and as a function of increased environmental complexity.
Successive M values can be compared to assess the
learning or improvement rate of the system. Likewise, suc-
cessive values for the environmental complexity measures
can be used to assess the agent’s improving ability to

handle increased environmental difficulty, for instance:
Ct (avg. complexity tolerance) = %

V,t (avg. variability tolerance) = ﬁ}\/j

dot (avg. volatility tolerance) = ﬁ‘gjl

D,t (avg. domain flexibility) = iﬁ;

Similar metrics can of course be used for measuring
changes in sensitivity, specificity, PPV, and NPV as a
function of task complexity. These various measures taken
together can give a clear picture of the perturbation toler-
ance of a given cognitive agent.

Finally, because the special abilities possessed by some
intelligent agents, such as getting advice, reorganizing
one’s KB, or changing one’s conceptual categories, can
be very time-consuming, their worth depends a great deal
on the value of accuracy -vs- the need for quickness in a
given task. Thus in many cases it is sensible to introduce

6The variable T’ might also be calculated as correct IDs minus incorrect
IDs (TP — F P, sce below).

the domain variable Ry, a subjective measure of the im-
portance of accuracy in the current task-domain. Although
the variable Ry does not actually change anything about
the domain itself, it can be used to inform the agent about
the characteristics of its task. For the autonomous agent
with complex cognitive abilities, and the ability to measure
and track its own performance, Ry can provide a threshold
measure as to when (and when not) to stop and ponder.

S. IMPLEMENTATION AND APPLICA-
TION

A general test domain—PWorld—allowing for relatively
easy characterization according to the suggested standard
has been implemented as a component object model
(COM) object on Microsoft Windows. PWorld is an n X n
grid, and all elements of the world, including character-
izing propositions, are stored and tracked in a database,
with which PWorld communicates using ActiveX Data
Objects (ADO). Active elements of the world—e.g. agents,
weather, and such things as plants that can wither or
grow—are implemented as separate COM objects that
can communicate directly with the world, and indirectly
with other active elements, by calling PWorld’s various
methods, such as: addProposition(), sense(), move(), and
eat().

PWorld was recently used to measure the perturbation
tolerance of an agent using a standard reinforcement
learning technique (Q-learning), and to compare it to the
perturbation tolerance of an agent using a version of Q-
learning that was enhanced with simple metacognitive
monitoring and control (MCL) to create a very simple
cognitive agent. The basic idea behind Q-learning is to
try to determine which actions, taken from which states,
lead to rewards for the agent (however these are defined),
and which actions, from which states, lead to the states
from which said rewards are available, and so on. The
value of each action that could be taken in each state—its
Q-value—is a time-discounted measure of the maximum
reward available to the agent by following a path through
state space of which the action in question is a part.

The Q-learning algorithm is guaranteed, in a static
world, to eventually converge on an optimal policy [14],
[15], regardless of the initial state of the Q-learning
policy and the reward structure of the world. Moreover,
if the world changes slowly, Q-learning is guaranteed to
converge on near-optimal policies [16]. This is to say
that Q-learners are already somewhat perturbation tolerant.
However, we found that the actual performance of a Q-
learner in the face of perturbation varies considerably, and,
indeed, that post-perturbation performance is negatively
correlated to the degree of perturbation (R = —0.85,p <
0.01). We further discovered that adding even a very

simple metacognitive monitoring and control (MCL) com-
ponent, that monitored reward expectations and, if expec-
tations were repeatedly violated, instructed the Q-learner
to change its policy in one of a number of ways, could
greatly improve the perturbation tolerance of a Q-learner.
The comparative performance results are summarized in
Figure 1. The results show a high degree of correlation
between the degree of the perturbation and the ratio of
MCL to non-MCL performance (R = 0.79,p < 0.01).
See [17] for details.

4.5 T T T T T T T

25 Bl

MCL/non-MCL post-perturbation performance

+
+ d
+

+

L L L L
4 5 6 7 8
degree of perturbation

0.5

[S
++
Wl o+ o+t

Fig. 1. Ratio of MCL/non-MCL post-perturbation performance, as a
function of the degree of perturbation. (R = 0.79,p < 0.01)

However, from the standpoint of the current paper, what
is important is the evaluation scheme in general, and our
estimate of the “degree of perturbation” in particular. For
this, the experiment must be understood in some more
detail. To establish the above results, we built a standard
Q-learner, and, starting with no policy (all Q-values=0),
placed the Q-learner in an 8x8 grid-world—the possible
states being locations in the grid—with reward r1 in square
(1,1) and reward r2 in square (8,8). The initial reward
structure [r1,r2] of the world was one of the following:
[10,-10]; [25,5]; [35,15]; [19,21]; [15,35]; [5,25]. The Q-
learner was allowed to take 10,000 actions in this initial
world, which was enough in all cases to establish a very
good albeit non-optimal policy. After receiving a reward,
the Q-learner was randomly assigned to one of the non-
reward-bearing squares in the grid. In turn 10,001, the
reward structure was abruptly switched to one of the
following: [25,5]; [35,15]; [19,2117; [15,35]; [5,25], [-
10,10].

Our task-based performance measure for the Q-learner
was the ratio of actual average reward per action taken
(henceforth, per turn) to the ideal average reward per turn,

7Except when the initial structure was [19,21], in which case the post-
perturbation structure was [21,19]

i.e., the average reward per turn theoretically available
to a Q-learner following an optimal policy in the given
environment. To get a handle on the difficulty of each
perturbation, we first considered that the learned Q-table
can be visualized as a topographic overlay on the grid
world, where positive rewards are attractors, and negative
rewards are repulsors, and the grade of the topography (the
differences in the Q-values for each action at each location)
corresponds to the degree of attraction to a given reward.
Following the policy recommended by the Q-table is
equivalent to moving downhill as quickly as possible. For
simplicity, we can abstract considerably from this picture,
and imagine that each square of the policy-overlay contains
a proposition indicating the direction of the slope—toward
(1,1), or toward (8,8). For a given perturbation, then, we
can get one factor in the difficulty of the change, by
counting the number of squares where the propositions
characterizing the slope (as determined by an ideal policy)
have changed. Thus, for instance, to go from the ideal
abstract policy for reward structure [10,-10] (every square
says go to (1,1)) to the abstract policy for reward structure
[-10,10] (every square says go to (8,8)) involves a large
overlay difference (D,,) of value 64, but going from [19,21]
to [21,19] involves essentially no overlay difference.®

Another factor in measuring the degree of perturbation
we considered for the current case was any valence change
in the rewards. A valence change makes the perturbation
greater because it makes it harder for the agent to actually
change its abstract policy (one way to think about this
might be as the mathematical equivalent of a contradic-
tion). For instance, a negative reward that becomes positive
(V1) is masked from the agent because the policy is
strongly biased against visiting that state. Thus, in light
of the above considerations, we devised an equation to
estimate the degree of perturbation (D) in each of the 22
cases:

D, =D,/16+3V"T +V~ (7

The experiment as described primarily evaluated the
perturbation tolerance of the agent in terms of its ability
to move effectively between different (abstract) overlays,
making the overlay difference the most relevant measure.
However, other aspects of the test domain can indeed be
measured according to the metrics offered here.

8Tt should be noted that this is an adaptation of the meaning of overlay
and overlay difference to fit the experimental circumstances, and the
nature of the agent being tested. If we understand the task of a Q-learner
in terms of uncovering and mapping the reward-based topography of a
given region, then this is the relevant difference between two regions
that needs measuring when assessing the difficulty of moving from one
to the other. Such adaptation of shared definitions and terms to individual
circumstances is inevitable, and care must be taken in each case to
properly explain individualized uses, and to remain sensitive to the overall
goal of allowing cross-experiment comparisons.

n (overlay size) = 64. There are 64 squares in the
overlay.

pr (information density)= 3. Three propositions charac-
terize each square: an X value and Y value that corre-
spond to its location, and an R value that corresponds
to the reward available there.

V, (variability)= 0.36. The average minimum graph dis-
tance between squares in the grid is 5.5, and the
average propositional difference is just above 2 (a
square can differ by at most 3 propositions (X, Y and
R), however most of the squares differ by 2 (X and
Y, X and R, or Y and R), and a few by only 1 (X or
Y)).

do (volatility)= 0. The overlay does not change over time.

I (inconsistency)= 0%/3%. Two values are given here,
because when the agent begins the experiment, it has
no beliefs, and there is therefore no inconsistency.
However, when it moves between the two overlays,
it has 64 beliefs about the rewards available in each
square. Two of these beliefs are in direct conflict
with the state of the world (2/64 = 0.03). Note the
agent also has a number of beliefs about what actions
to take in what circumstances to achieve maximum
reward; many of these beliefs are false in its new
circumstances. However they are not directly about the
world, and nothing that the agent can perceive about
the world directly contradicts any of these beliefs.
Therefore, these do not count toward the measure of
inconsistency.

U (uncertainty) = 0. The agent had perfect knowledge of
its environment.

6. CHALLENGES

As the suggestions I have made are just that—preliminary
suggestions meant as the starting point of a potentially long
but important investigation, there remain some significant
questions and challenges. First, and most obvious: are the
elements of the environment identified here in fact the most
important? And are the methods suggested for measuring
them appropriate? Related to this: how easy will it be in
practice to interpret a given test domain according to this
proposal? For it is clear that even in the case where a
domain is grid-available, and where it is therefore possible
to apply these metrics, it will not necessarily be easy to
do so. Although applying these metrics will be quite easy
in domains like the one described above, where the parts
and their contents are well defined, and even expressed in
terms of the defined partition, it will be much less easy
in test environments not designed along this model, for
instance video games. Thus, some attention must be paid
to developing principled, automated methods for analyzing
test domains in accordance with the suggestions outlined
here.

7. CONCLUSION

In this paper I have suggested a standard way to charac-
terize the size, information density, variability, volatility,
inconsistency and uncertainty of a given test environ-
ment, each of which contribute to the complexity of that
environment. [have also suggested a way to measure
the difference between two different environments of the
same size. From these basic measures, I have shown how
one can construct more comprehensive measures of the
complexity of the environment, and I have given several
examples of how the metrics can be used to measure the
task performance and perturbation tolerance of cognitive
agents. Finally, I showed how some of the metrics were
applied to demonstrate that a metacognitive monitoring
and control component could enhance the perturbation
tolerance of a simple machine-learner. Although significant
challenges remain, it is hoped that the paper will prove a
useful starting point to the investigation of an important
topic.

8. ACKNOWLEDGMENTS

This paper is a revised version of [18]. The research is
supported in part by the AFOSR.

9. REFERENCES

[1] J. McCarthy, “Elaboration tolerance,” in Proceedings of the Fourth
Symposium on Logical Formalizations of Commonsense Reasoning,
1998.

[2] E. Amir, “Toward a formalization of elaboration tolerance: Adding
and deleting axioms,” in Frontiers of Belief Revision, M. Williams
and H. Rott, Eds. Kluwer, 2000.

[3] M. Greenberg and D. Westbrook, “The phoenix testbed,” 1990, tech-
nical Report UM-CS-1990-019, Computer and Information Science,
University of Massachusetts at Amherst.

[4] P. R. Cohen, M. L. Greenberg, D. M. Hart, and A. E. Howe, “Trial
by fire: Understanding the design requirements for agents in compex
environments,” 1989, technical Report UM-CS-1990-061, Computer
and Information Science, University of Massachusetts at Amherst.

[5S] M. Pollack and M. Ringuette, “Introducing the tileworld:
experimentally evaluating agent architectures,” in Proceedings
of the Eighth National Conference on Artificial Intelligence,
T. Dietterich and W. Swartout, Eds. Menlo Park, CA:
AAAI Press, 1990, pp. 183-189. [Online]. Available:
citeseer.nj.nec.com/pollack90introducing.html

[6] E. Durfee and T. Montgomery, “MICE: A flexible testbed for
intelligent coordination experiments,” in Proceedings of the Ninth
Workshop on Distributed Al, Rosario, Washington, 1989, pp.
25-40. [Online]. Available: citeseer.nj.nec.com/durfee89mice.html

[7]1 D. Perlis, “On the consistency of commonsense reasoning,” Compu-
tational Intelligence, vol. 2, pp. 180-190, 1986. [Online]. Available:
http://www.cs.umd.edu/projects/active/doc/papers/86/occr.pdf

[8] K. Purang, “Systems that detect and repair their own mistakes,”
Ph.D. dissertation, Department of Computer Science, University of
Maryland, College Park, Maryland, 2001.

[9] J. Elgot-Drapkin, “Step-logic: Reasoning situated in time,” Ph.D.
dissertation, Department of Computer Science, University of Mary-
land, College Park, Maryland, 1988.

[10] J. Elgot-Drapkin, S. Kraus, M. Miller, M. Nirkhe, and D. Perlis,
“Active logics: A unified formal approach to episodic reasoning,”
Univ of Maryland, UMIACS and CSD, Tech. Rep. UMIACS TR #
99-65, CS-TR # 4072, 1993.

(11]

[12]

[13]

(14]
[15]

[16]

[17]

[18]

J. Elgot-Drapkin and D. Perlis, “Reasoning situated in time I:
Basic concepts,” Journal of Experimental and Theoretical Artificial
Intelligence, vol. 2, no. 1, pp. 75-98, 1990.

K. Purang, D. Purushothaman, D. Traum, C. Andersen, and
D. Perlis, “Practical reasoning and plan execution with active logic,”
in IJCAI-99 Workshop on Practical Reasoning and Rationality,
1999.

M. Bhatia, P. Chi, W. Chong, D. P. Josyula, M. Anderson,
Y. Okamoto, D. Perlis, and K. Purang, “Handling uncertainty
with active logic,” in Proceedings of the AAAI Fall Symposium
on Uncertainty in Computation, 2001. [Online]. Available:
http://www.cs.umd.edu/ mikeoda/papers/aaaiOl.pdf

C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D.
dissertation, Cambridge University, Cambridge, England, 1989.
C.J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, pp. 279-292, 1992.

I. Szita, B. Takécs, and A. Lorincz, “e-MDPs: Learning in varying
environments,” Journal of Machine Learning Research, vol. 3, pp.
145-174, 2002.

M. L. Anderson, T. Oates, W. Chong, and D. Perlis, “Enhancing
reinforcement learning with metacognitive monitoring and control
for improved perturbation tolerance,” submitted.

M. L. Anderson, “Specification of a test environment
and performance measures for perturbation-tolerant cognitive
agents,” in Proceedings of the AAAlI Workshop on
Intelligent Agent Architectures, 2004. [Online]. Available:
http://www.cs.umd.edu/ anderson/papers/aaai_metrics_04.pdf

